New Mexico State University Klipsch School of ECE
 EE 493/543 - Power Systems III
 Fall 2009
 Project Part - II
 Due: Friday, 12/04/2009, 4 PM - will not be extended.

Name (print) : \qquad
ID \# : \qquad
I have neither given nor accepted help on this test
Signature: \qquad

Parts	Maximum Points	Actual Score
1	10	
2	10	
3	10	
4	10	
5	20	
6	30	
7	10	
Total	$\mathbf{1 0 0}$	

You may use MATLAB ${ }^{\circledR}$ or any other programming language of your choice. Any ready EMS software (like Powerworld ${ }^{\circledR}$) is not permitted.

Note: You will submit your code for me to cross-check your answers. For grading, your answers will be cross-checked with the results from the code that you will submit. The code will consist of ONE file that needs to be run (other files for data input/output are permitted), and all the results should be displayed either on the MATLAB command window, or stored in a file in an organized manner. Any results that are not displayed properly with accompanying legend will NOT be considered for grading.

This is a take-home exam. NO interactions between students are permitted. Please follow the code of ethics very strictly. Any defaults will result in zero-grade and will be formally reported to the department.

Following are the one-line diagram (Fig. 1) and the data for the 6-bus, 115 kV , transmission system that you used in the first part of the project for the load flow study. Generators are now modeled for short-circuit study and are shown connected through transformers. Take a base of $115 \mathrm{kV}_{\mathrm{L}-\mathrm{L}}, 100 \mathrm{MVA}_{3 \text {-phase }}$ in the transmission zone. Assume the capacitors (rated $115 \mathrm{kV}_{\mathrm{LL}}$) are connected to the system.

Fig. 1. Single-line diagram of the power system to be analyzed

Bus	Load (MVA)	Generation	Capacitors (MVAR)
1 (Slack)	$50+\mathrm{j} 80$	Yes	
2	$95+\mathrm{j} 50$	---	70
3	$60+\mathrm{j} 110$	200 MW	
4	$70+\mathrm{j} 100$	---	80
5	$80+\mathrm{j} 40$	120 MW	60
6	$40+\mathrm{j} 50$	---	

Line		Length (km)
From-Bus	To-Bus	
1	2	70
1	3	90
2	4	80
4	5	100
4	6	50
5	6	85
3	5	60

1) Draw below positive, negative and zero sequence networks of the system with all impedances/reactances shown in Per Unit values.
2) Show zero-sequence bus impedance and bus admittance matrices in polar coordinates below:
$\mathrm{Y}_{\mathrm{BUS}}{ }^{(0)}$: Specify in polar form (pu):

$\mathrm{Z}_{\mathrm{BUS}}{ }^{(0)}$: Specify in polar form (pu):

3) Show positive/negative-sequence bus impedance and bus admittance matrices in polar coordinates below:
$\mathrm{Y}_{\text {BUS }}{ }^{(1)}=\mathrm{Y}_{\text {BUS }}{ }^{(2)}$: Specify in polar form (pu):

$\mathrm{Z}_{\mathrm{BUS}}{ }^{(1)}=\mathrm{Z}_{\mathrm{BUS}}{ }^{(2)}$: Specify in polar form (pu):

Now consider there is a Single Line to Ground Fault with $\mathbf{4} \mathbf{\Omega}$ resistance at bus\#4.
4) Find out the total fault current in Amperes and write it down below in polar form:
$\mathrm{I}_{\mathrm{F}}=$ \qquad Amperes.
5) Find out and show the voltages at all buses in polar form after the fault in Volts. Do NOT neglect the pre-fault conditions. You can get the pre-fault voltages from the load-flow results given as the solution of part-I of this project.

	Bus 1- (V)	Bus 2- (V)	Bus 3- (V)	Bus 4-(V)	Bus 5-(V)	Bus 6-(V)
Phase- A						
Phase- B						
Phase- C						

6) Find out the fault contributions from the three generators in Amperes and write it down below in polar form:

Generator		Current (Amperes) - HV side of Transformer	Current (Amperes) - LV side of Transformer
G1	Phase - A		
	Phase - B		
	Phase - C		
	Phase - A		
	Phase - B		
G5	Phase - C		
	Phase - B		
	Phase - C		

7) Find out the three-phase short circuit MVA at bus\#3. From the list of breakers given in table 7.10 - page\#378 in your text-book; is there any breaker that is suitable to be installed at this bus? If yes, which one? Justify your answers.

- Show your method/calculations and intermediate answers (if any) on separate sheets as appendix. I will not go through the calculations (and you will lose points) unless they are clearly written and well-organized. It is not my job to figure out what you are trying to say, it is your job to explain to me what you are trying to communicate. MATLAB command-window printout is NOT allowed.
- Send me a soft copy of your code for me to verify your results. Do NOT give me the hard copy of the code.

